SALTS

A salt is a compound formed when the hydrogen ions in an acid are replaced by metal ions or by ammonium ions. Compounds in which the H^+ ions in an acid have been replaced by ammonium ions (NH_4^+) are called ammonium salts.
NOTE:
• An anion is a negatively charged ion. Hence:-
• Hydrochloric acid gives chlorides. E.g. sodium chloride, ammonium chloride.
• Nitric acid gives nitrates. E.g. barium nitrate, copper nitrate.
• Sulphuric acid gives sulphates. E.g. silver sulphate, iron (ii) sulphate.
• Phosphoric acid gives phosphates. E.g. sodium phosphate, ammonium phosphate.
• Each acid gives rise to a series of salts named by the ANION which they contain.
Some acids can donate more than one replaceable hydrogen ion (proton)

E.g. sulphuric acid (H_2SO_4) and phosphoric acid (H_3PO_4).

Sulphuric acid can give rise to two series of salts and phosphoric acid to three series of salts depending on how many protons are replaced.

i.e. (a) $H_2SO_4 \rightarrow NaHSO_4 \rightarrow Na_2SO_4$

(b) $H_3PO_4 \rightarrow NaH_2PO_4 \rightarrow Na_2HPO_4 \rightarrow Na_3PO_4$
• **NORMAL SALTS** - These are salts which do not contain replaceable hydrogen. E.g. sodium chloride (NaCl).
• **ACIDIC SALTS** - These are salts which contain replaceable hydrogen. This is because when the hydrogen is replaced they are acting like an acid. E.g. sodium hydrogen sulphate (NaHSO₄).

• The method chosen to prepare a salt depends on its solubility.
• Solubility depends on the combination of positive and negative ions.
<table>
<thead>
<tr>
<th>SOLUBLE</th>
<th>INSOLUBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All nitrates</td>
<td>All carbonates except for sodium, potassium and ammonium carbonates</td>
</tr>
<tr>
<td>2 All chlorides except for silver chloride and lead (ii) chloride</td>
<td>All sulphides except for sodium, potassium and ammonium sulphides</td>
</tr>
<tr>
<td>3 All sulphates except for calcium, barium and lead (ii) sulphates</td>
<td>All oxides except for sodium potassium and ammonium oxides</td>
</tr>
<tr>
<td>4 All sodium, potassium (even other group I elements), ammonium and</td>
<td>All hydroxides except for sodium, potassium (group I), ammonium and</td>
</tr>
<tr>
<td>nitrate compounds are soluble</td>
<td>calcium hydroxides</td>
</tr>
</tbody>
</table>
NOTE:
• Insoluble salts are prepared by PRECIPITATION.
• Soluble salts are prepared by FILTRATION and CRYSTALLISATION method or by TITRATTION.

PREPARATION OF INSOLUBLE SALTS
• Insoluble salts are prepared by mixing solutions containing their positive and negative ions using the method of precipitation (Double decomposition).
• The reactants are chosen so that on exchanging ions the unwanted product is still soluble but the given insoluble salt will form as a precipitate.
• I.e. soluble salt + soluble salt → soluble salt + insoluble salt (precipitate).
NOTE:
• A precipitate is an insoluble solid formed when a chemical reaction occurs between two dissolved ionic substances.

CHOOSING REACTANT SOLUTIONS
• The other one must contain the negative ion of the insoluble salt required.

PROCEDURE OF PRECIPITATION
• Dissolve each reactant separately in water.
• Mix chemically equivalent quantities of the reactant solutions.
• Filter the solution and wash the precipitate in warm distilled water.
• One must contain the positive ion of the insoluble salt required.
• Dry the solid salt that was produced in an oven (105°C).

EXAMPLES

• PREPARATION OF BARIUM SULPHATE (BaSO₄)
• We can use barium nitrate and sodium sulphate.

REACTANT IONS

<table>
<thead>
<tr>
<th>Ion</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba²⁺</td>
<td>NO₃⁻ → NaNO₃ (soluble)</td>
</tr>
<tr>
<td>Na⁺</td>
<td>SO₄²⁻ → BaSO₄ (Insoluble)</td>
</tr>
</tbody>
</table>
PREPARATION OF SILVER CHLORIDE (AgCl)

- We can use silver nitrate and sodium chloride.

Reactant Ions

<table>
<thead>
<tr>
<th>Ion</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag^+</td>
<td>NO_3^-</td>
<td>NaNO_3 (soluble)</td>
</tr>
<tr>
<td>Na^+</td>
<td>Cl^-</td>
<td>AgCl (insoluble)</td>
</tr>
</tbody>
</table>

Note:

- The easiest salt solution containing the positive ions is the metal nitrate since all nitrates are soluble.
- For a solution containing the negative ions, we can use the sodium salt as all sodium salts are soluble.
PREPARATION OF LEAD (II) IODIDE (PbI₂)

I.e. \(\text{Pb} (\text{NO}_3)_2 (aq) + 2\text{NaI} (aq) \rightarrow \text{PbI}_2 (s) + 2\text{NaNO}_3 (aq) \)

IONICALLY

I.e. \(\text{Pb}^{2+} (aq) + 2\text{I}^- (aq) \rightarrow \text{PbI}_2 (s) \)
LEAD NITRATE SOLUTION

SODIUM IODIDE SOLUTION

MIX

Na⁺ and NO₃⁻ are SPECTATOR IONS

A PRECIPITATE OF LEAD IODIDE
NOTE:

• The reactants involved in a precipitation reaction must be in solution form because the ions must be able to move and interact with one another when the reactants are mixed.

• When the ions in the insoluble salt encounter each other, they get attracted and form a solid that will sink to the bottom of the container and be collected as a PRECIPITATE.
PREPARATION OF SOLUBLE SALTS.

• Soluble salts are prepared using two methods:
 • Filtration and crystallisation method. i.e. neutralising an ACID with EXCESS INSOLUBLE REACTANT.
 • Titration. i.e. neutralising an ACID with the EXACT amount of ALKALI.
• **FILTRATION AND CRYSTALLISATION METHOD**

• This method is used when a suitable insoluble starting material has been found.

• The acid reacts with an excess of insoluble reactant that can be:
 - Metal
 - Base (insoluble)
 - Carbonate

• Therefore, to prepare a given salt, we need to choose the correct acid and a suitable insoluble reactant. (metal, oxide, hydroxide or carbonate).
PROCEDURE

- Neutralise an acid with an excess of the insoluble reactant.
- Filter off any unreacted reagent.
- Evaporate the solution to the crystallisation point.
- Cool to produce crystals of the salt.
- Filter, wash and dry the crystals before collection.
EXAMPLE

PREPARATION OF COPPER (II) SULPHATE

• Starting materials include copper (ii) oxide and dilute sulphuric acid.

• i.e. \(\text{CuO}_\text{(s)} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{CuSO}_4(\text{aq}) + \text{H}_2\text{O}_\text{(l)} \)
STEP 1.
• An excess reactant ensures that all the acid has been used up.
• Don't boil. The is is just waemed to increase the rate of reaction between the reactants.
STEP 2.

MIXTURE: COPPER (II) SULPHATE SOLUTION AND EXCESS COPPER (II) OXIDE

RESIDUE: EXCESS COPPER (II) OXIDE

FILTRATE: COPPER (II) SULPHATE AND WATER
Dont evaporate all the water. The filtrate is heated until a thin crust of crystals form on the surface of the liquid.
NOTE:
• If a metal carbonate is used to prepare a salt using this method, there will be bubbles of carbon dioxide gas as the metal carbonate is added to the acid in step 1.
• When there is no more bubbles, it means that all the acid has been used up and we can proceed to the next step.
TITRATION

Soluble salts of ammonium and group I metals (sodium, potassium and lithium) are prepared using this method. This is because all their compounds are soluble (including metals themselves) and very reactive.

Group I metals are very reactive resulting in too violent reactions that we cannot use excess reactant.
NOTE:

• Titration means using the EXACT quantities of reactants for the reaction.
• This method is used when it is not possible to find a suitable insoluble starting material like a metal, metal oxide or a carbonate that can be easily filtered off at the end of the reaction.
INDICATOR

- In titration, an indicator is needed to show the endpoint of one reactant needed to exactly neutralise a given volume of the other reactant.
- A common indicator used in the laboratory is the screened methyl orange.
<table>
<thead>
<tr>
<th>ACIDIC SOLUTION</th>
<th>END POINT (NEUTRAL)</th>
<th>ALKALINE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>GREY/COLOURLESS</td>
<td>GREEN</td>
</tr>
</tbody>
</table>

PROCEDURE OF TITRATION

- The most common procedure is to react the alkali solution with the dilute acid using a burette.
- An indicator is used to determine when the exact amount of reactant has been added.
EXAMPLE: PREPARATION OF SODIUM NITRATE.

• Starting materials include sodium hydroxide and dilute nitric acid.
• i.e. \(\text{NaOH}_{(aq)} + \text{HNO}_3(aq) \rightarrow \text{NaNO}_3(aq) + \text{H}_2\text{O}(l) \)

STEP 1.
• Place the soluble dilute acid in a conical flask.
• Add a few drops of indicator. E.g. methyl orange.
STEP 2.

- From a burette, slowly add the alkali solution. Ensure that the solution is mixed well.
- When the indicator begins to change colour, the reaction should be slowed to a drip.
- At this point, just enough acid is added to neutralise the alkali, all the alkali has reacted.
i.e.
STEP 3.

• Once the colour change is complete, the reaction is complete (END POINT).
• The burette should be turned off.
• The resulting mixture contains only sodium nitrate and water.

NOTE:

• From the titration result, we can know the exact volume of nitric acid needed to react with 25.0 cm3 of sodium hydroxide.
• From the burette, volume of nitric acid needed will be: $V_n = V_2 - V_1$.
STEP 4.

- Evaporate the sodium to crystallisation point.
- Cool to produce crystals of the salt.
- Filter, wash and dry the crystals.

NOTE:

- In a strict titration, a second titration must be carried out.
- The salt solution obtained in the first titration is thrown away because it is affected by the indicator.
- The second titration is done without the indicator. The exact volume of acid to be added is obtained from the first titration.